e-content for students

B. Sc.(honours) Part 2 paper 3

Subject:Mathematics

Topic:Properties of continuous function

RRS college mokama

Properties of continuous function

```
Theorem 1 If f(x) and v(x) are continuous at x = a then
```

- (i) $f(x) \pm \phi(x)$ are continuous at x = a
- (ii) $f(x) \times \varphi(x)$ is continuous at x = a;
- (iii) $\frac{f(x)}{\varphi(x)}$ is continuous at x = a provided

$$\varphi(x) \neq 0$$
 for $a = h \leq x \leq a \Rightarrow h$,
Proof. As $f(x)$ and $\varphi(x)$ are continuous at $x = a$,
 $\lim_{a \Rightarrow a} f(x) = f(a)$ and $\lim_{a \Rightarrow a} \varphi(x) = \varphi(a)$,

(i) Let
$$F(x) = f(x) \pm \varphi(x)$$
; then $F(a) = f(a) \pm \varphi(a)$.
Now $\lim_{n \to a} F(x) = \lim_{n \to a} [f(x) \pm \varphi(x)]$

$$= \lim_{\omega \to a} f(x) + \lim_{\omega \to a} \psi(x), \quad \text{(by theorem on limit)}$$

$$= f(a) \oplus \psi(a) = F(a).$$

F(x) is continuous at x = a.

(ii) Let
$$G(x) = f(x) \times \varphi(x)$$
; then $G(a) = f(a) \times \varphi(a)$.
Now
$$\lim_{x \to a} G(x) = \lim_{x \to a} [f(x) \times \varphi(x)]$$

$$= \lim_{x \to a} f(x) \times \lim_{x \to a} \varphi(x).$$
 (by theorem on $f(a) \times \varphi(a) = f(a) \times \varphi(a) = G(a)$.

. G(x) is continuous at x = a.

(iii) Let
$$G(x) = \frac{f(x)}{\varphi(x)}$$
; then $G(a) = \frac{f(a)}{\varphi(a)}$.
Not $\lim_{x \to a} G(x) = \lim_{x \to a} \frac{f(x)}{\varphi(x)}$

$$= \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} \varphi(x)}, \text{ (by theorem on limit)}$$

$$= \frac{f(a)}{\varphi(a)} = G(a).$$

G(x) is continuous at x = a.

Theorem If f is continuous, then so is If.

Proof: Let f be continuous at a point $x = a \in I$.

Then given $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$|x-a| < \delta \implies |f(x)-f(a)| < \varepsilon$$

But we know that

w that
$$||f(x)| - |f(a)|| < |f(x) - f(a)|,$$

that is,
$$|f|(x) - |f|(a) < |f(x) - f(a)|$$

Hence combining (1) and (2), we find that

Therefore Continuous
$$|x-a| < \delta \Rightarrow ||f|(x) - |f|(a)| < \varepsilon$$
.

This shows that |f| is continuous at x = a.

Peorem 3 If f(x) be continuous in the closed interval [a, b], then, given ϵ , the interval can always be divided up into a finite number of sub-intervals such that $|f(x_1) - f(x_2)| < \epsilon$, where x_1 and x_2 are any two points in the same sub-interval.

Proof. Suppose that the theorem is not true.

Let c be the mid-point of [a, b]. Then [a, b] is divided into two equal sub-intervals [a, c] and [c, b].

The theorem must not be true in at least one of the two sub-intervals [a, c] and [c, b].

Suppose it is not true in [c, b]. Denote this sub-interval by $[a_1, b_1]$. It is evident that the interval $[a_1, b_1]$ lies wholly inside [a, b] and is of length $b_1 - a_1$, that is, $\frac{1}{2}(b - a)$.

Again divide $[a_1, b_1]$ into two equal sub-intervals. We denote the interval in which the theorem is not true by $[a_2, b_2]$. Obviously the sub-interval $[a_2, b_2]$ lies wholly inside $[a_1, b_1]$ and is of length $b_2 - a_2$, that is, $\frac{1}{2}(b_1 - a_1)$, that is,

$$\frac{1}{2} \cdot \frac{1}{2} (b - a) \Rightarrow \frac{1}{2^2} (b - a).$$

Apply this process of repeated bisection. In this way we get an interval $[a_n, b_n]$ in which the theorem is not true and this interval lies wholly inside the preceding interval $[a_{n-1}, b_{n-1}]$ and

is of length $b_n - a_n$, that is, $\frac{1}{2^n}(b - a)$.

$$\therefore \lim_{n\to\infty} (b_n-a_n) = \lim_{n\to\infty} \frac{b-a}{2^n} = 0$$

$$\Rightarrow \lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n = x_0 \text{ (say)}.$$

Suppose, for definiteness, that x_0 does not coincide with a or b.

Since f(x) is continuous at $x = x_0$, therefore, by definition of continuity, there exists a value of δ such that

$$|f(x)-f(x_0)|<\frac{\epsilon}{2}, \text{ when } |x-x_0|<\delta.$$
 (1)

If n be chosen so large that $b_n - a_n$ is less than δ , then the interval $[a_n, b_n]$ is contained entirely within the interval

$$[x_0-\delta,x_0+\delta].$$

Let x_1 and x_2 be any two points in (a_n, b_n) , then from (1), we get

$$|f(x_1) - f(x_0)| < \frac{\epsilon}{2}$$
and $|f(x_2) - f(x_0)| < \frac{\epsilon}{2}$.

Now $f(x_1) - f(x_2) = f(x_1) - f(x_0) + f(x_0) - f(x_2)$

$$\Rightarrow |f(x_1) - f(x_2)| = |\{f(x_1) - f(x_0)\} + \{f(x_0) - f(x_2)\}\}|$$

$$\Rightarrow |f(x_1) - f(x_2)| < \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$\Rightarrow |f(x_1) - f(x_2)| < \epsilon.$$

This is a contradiction to our supposition. Hence our supposition is wrong. In other words, the theorem must be true.

Theorem 4:prove that a function w hich is continuous in a closed inter val[a b] is bounded therein

Proof. We know that if f(x) be continuous in the closed interval [a, b], then, given ϵ , the interval can always be divided up into a finite number of sub-intervals such that

$$|f(x_1) - f(x_2)| < \epsilon,$$

where x_1 and x_2 are any two points in the same sub-interval.

Let the dividing points be $x_0 = a, x_1, x_2, \ldots, x_{n-1}, x_n = b$.

Let x be any point in the first sub-interval $[a, x_1]$.

Then, from (1), we have

$$|f(a)-f(x)|<\epsilon. \tag{2}$$

Now
$$f(x) = f(a) + \{ f(x) - f(a) \}$$

$$\Rightarrow |f(x)| = |f(a) + \{f(x) - f(a)\}|$$

$$\Rightarrow |f(x)| \leq |f(a)| + |f(x)| - f(a)|$$

$$\Rightarrow$$
 $|f(x)| < |f(a)| + \epsilon$, using (2).

In particular, when $x = x_1$,

$$||f(x_1)|| < ||f(a)|| + \epsilon.$$
 (3)

Again, let x be any point in the second sub-interval $[x_1, x_2]$. Then from (1), we have

$$|f(x_1) - f(x)| < \epsilon. \tag{4}$$

Now
$$f(x) = f(x_1) + \{f(x) - f(x_1)\}\$$

$$\Rightarrow |f(x)| = |f(x_1) + \{f(x) - f(x_1)\}|$$

$$\Rightarrow |f(x)| \leq |f(x_1)| + |f(x) - f(x_1)|$$

$$\Rightarrow |f(x)| < |f(x_1)| + \epsilon, \text{ from (4)}$$

$$\Rightarrow |f(x)| < |f(a)| + 2\epsilon, \text{ using (3)}.$$

In particular, when $x = x_2$,

$$|f(x_2)| < |f(a)| + 2\epsilon$$

By proceeding in this way we get, when x is any point in n^{th} sub-interval $[x_{n-1}, b]$,

$$|f(x)| < |f(a)| + n\epsilon.$$

This inequality is true for the whole interval [a, b], that is, all the values of f(x) in the interval [a, b] lie between $f(a) - n\epsilon$ and $f(a) + n\epsilon$.

Hence f(x) is bounded in [a, b].